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Abstract. An exact algorithm of search for energy barriers against inversion of ground 
states is presented. For the case when each spin is allowed to Rip only once, the harriers 
in ferromagnetic and spin glassy 2 0  systems are found to scale linearly with the linear size 
of the system. 

Dynamics of Ising systems are of a purely relaxational nature [l]. In the absence of 
an external driving force each time-dependent quantity is a superposition of exponen- 
tially decaying processes which can be characterized by their corresponding relaxation 
times. Studies of various spin clusters [ Z ]  indicate that the spectrum of relaxation 
contains, in general, a portion of very long times and a portion related to rapid 
processes. The number of long relaxation times is equal to the number of local energy 
minima in the system (without counting the mirror images of the spin configurations 
as different). 

In uniform ferromagnets all but one of the microscopic processes are rapid. In spin 
glasses ( s c )  there are many long times. In paramagnets there are none. In each case 
the longest relaxation time is given by the Arrhenius law 

7 = A e B I k T  (1) 

where A is of order of the microscopic Glauber time for uncoupled spins. For uniform 
systems, the energy harrier, B, is equal to the energy required to invert the ground 
state configuration. For random systems B turns out to be of order of this reversal 
energy. The same result has been also obtained by McMillan [3] in Monte Carlo 
simulations. 

How does B depend on the linear size, L, of the system? We have studied this 
problem for various ZD models on a square lattice with free boundary conditions. The 
ground state spin configurations were obtained by the transfer matrix method and the 
barriers were then calculated using an exact algorithm which is described further on. 
This algorithm is related to the idea of the 'landscape exploration' used by Rammal 
and Benoit [4] to study ferromagnets on percolation clusters. The barrier calculation 
explores possible phase space trajectories in which spins are flipped once (in [4] mixed 
dynamics in which simultaneous two spin flips were also allowed was studied). Finally 
we discuss ways to generalize our algorithm for trajectories in which spins are flipped 
one at a time but not necessarily only once. 
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Our results for ferromagnets and SGS are shown in figure 1. System sizes are up to 
L = 5 (i.e. up to 6 spins in a row). In the case of random system we averaged over 
between 2000 and 5000 samples except for L = 5  when only 50 samples were taken 
into account. We considered Gaussian (CSG) and bimodal (BSG) spin glasses. For csc 
the dispersion in the couplings, J,, was equal to 1 while in the case of BSG the 
distribution is given by P(J,)=f[S(J,-l)+S(J,+l)] .  

The uniform ferromagnet (FM) had a unit coupling. In the case of disordered 
Ferromagnets (DFMj ihe J,'s were equai io ihe absoiuie vaiues of numbers generaied 
from the Gaussian probability distribution. Our results suggest that for each of the 
models considered the average barriers scale linearly with L 

(B) = bo+ b,L (2) 

implying some basic similarity in the dynamics involved. The values of bo are 4, 
2.39*0.10, 2.67*0.10, and 2.28*0.10 for FM. DFM, GSC,  and BSG respectively. The 
correspondingvaluesofb, are2, 1.63*0.02,0.87*O0.02,and0.82*0.02.Thedistribution 
of B in each of the four cases in Gaussian with dispersion which weakly depends on 
L and on the distribution of couplings. In the best trajectory the region with spins 
already inverted grew substantially in a compact fashion with only occasional jumps 
to more distant sites (there were no such jumps in FM). 

In the Fisher-Huse [ 5 ]  theory of the dynamics of Ising sc an elementary excitation 
in the system consists of a droplet of linear extension L. The creation of a droplet 
results in the formation of a domain wall. The corresponding energy cost scales as L" 
which is the basic tenet of the T = 0 scaling theory of scr [3,6,7]. For the D = 3 king 
SG y >  0, indicating a phase transition at a non-zero T whereas for D = 2 sc y <O, 
suggesting no spin glass order at non-zero T. The dynamics are controlled by the rate 
of creation of such droplets. Fisher and Huse postulate that the barrier against this 
relaxation scales as La where y s $ S (D  - 1). The argument for these inequalities goes 
as follows: the barrier must be a t  least as large as the energy required to create the 

12 I 

Figure 1. Scaling of average energy barriers for >U uniform ferromagnets ( FM), disordered 
ferromagnets (DFM), Gaussian (GSG) ,  and bimodal (BSC) king spin glasses. Lis (he linear 
sizeorthe system. Free boundaryconditionsare used. A typical dirpcrsionofthedistribution 
of the barriers is indicated for the DFM case. 



Letter to the Editor L129 

domain, hence y s  $; on the other hand, the barrier should be no larger than the 
barrier found in uniform ferromagnets because a SG should be able to take advantage 
of the frustration during relaxation, thus J, must not exceed ( D  - 1). 

Our calculation of B should also be valid-as far as the scaling law is concerned-for 
the case of the Fisher-Huse droplet. There are only two differences: different boundary 
conditions (free as opposed to those imposed by a background) and the compact shape 
of our geometry. None of these should matter because reversing a spin cluster requires 
rrrpprrig sprirb in me OUM UL LIK urupicr. ,ne nips on me ira~tai surra~e an" tn LIK 

presence of the background constitute merely small corrections. Our results suggest 
therefore that J, is actually equal to ( D  - I ) ,  the upper limit postulated by Fisher and 
Huse. 

I t  should be pointed out that in simple Migdal-Kadanoff approaches to scaling of 
the energy barriers, one would get J, = y, if y > 0, or zero otherwise. In those schemes 

thus barriers behave as the exchange couplings at those scales. Our results suggest that 
relaxation processes are global in nature and not restricted to particular length scales. 

We now proceed to the description of our calculations. For free boundary conditions 
we consider systems of N = L,*L, spins, where L ,  = L- 1 ( L  is the linear size of the 
system). The ground state was found by means of the transfer matrix method as used 

of the Potts SGJ [9]. 
We define the barrier to be the energy required to invert all spins in the ground 

state within the context of single spin Rip dynamics. The task here is to search through 
all trajectories (TR) of reversal. Consider, first, TRS in which spins can change their 
state only once. Each TR is characterized by an energy SE,.,, in excess of the ground 
state energy, corresponding to the highest point o n  the trajectory. Thus B = min (SEzax). 
In order to find B we first compose a table of all single-site energies, r,, required to 
invert individual spins in the background of all other spins remaining frozen. This 
table is updated whenever a spin reversal is made. The initial values of r, correspond 
to the ground state. We select first a tentative value, B,, of the barrier against the 
reversal of the whole system. In practice, it is convenient to take B ,  = max(r;). We 
select a resolution, R: within which the true barrier, B. will be determined. In practice, 
we take R =0.01. We then check whether one can find TRS of reversals that do not 
required a supply of more than E ,  of energy. 

The scanning through the T R ~  proceeds in the following way. First we label the 
spins 1 through N. Then we start the scan in the forward direction by attempting to 
Rip spin number 1 without exceeding B,  . If this cannot be done we turn directly to 
the second spin, and so on, until a Rip is successful. Each time we succeed we seek a 
new candidate for Ripping in the subset of the still unflipped spins by considering 
them always from the origin. 

Suppose that we arrive at the last spin in this way and that could not be Ripped. 
We then go back to the last successful Rip, undo it, and perform a forward search 'to 
the right' of that spin. If we fail to find another Rippable spin we undo still earlier 
successful Rips and search to the right of them. Whenever we manage to Rip we scan 
again from the origin. Note that the search automatically allows for TRS which start 
from each of the spins. A successful TR is found if the number of Ripped spins is equal 
to N. Should no TR be allowed, one can often learn about it in a search shorter than 
N !  long. The reason is that the constraint placed on the states not to exceed a given 
energy restricts the class of TRS to be considered. 

a:--: _.^_ .L. L..,,. . C . L ^  T..- ,,-~ .~~ P ...I. 1 c-.- . - J  :_ .L^ 

..-_: -.." m l o u o t i n -  a:.-- -,--,ac --P re ln tnA +n A-a,,:C.. Ie..rrrl.  lac nF +La n n A  
"Pl,"YI LCLLl,,(lLI"., u,ur D C P L C I  Plr Ib laLc"  L" JpGC."C 1 C " ~ " '  abaLCD Y E  L 1 1 S  JyJLc"1 a.." 

by nr2g 2nd Maare [5 j  ! T = 0) 2nd Margenster!! 2nd Finder [R! End i!! 0"r StlldiPS 
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If no allowed TR is found we conclude that R,  is too small an estimate of SE and 
we update B, to 

8, = B ,  + R. ( 3 )  
If at least one allowed TR is found we take note of SE,,, of the last such TR considered 
and update B ,  to 

B>= SE,,,- R. (4) 

We repeat the search with B ,  replaced by E,. We continue in this way until after one 
successful choice of B, we get to E,,,  which fails to produce an allowed inversion. 
The barrier B is then given by E ,  within the resolution R. (We checked that our 
algorithm gave the correct barrier for TRS generated by 'brute force' in small clusters.) 

Within the class of TRS in which spins are inverted only once and within the 
in 

full and the possible TRS. Note also that TRS which have been scanned through are 
automatically remembered by the selection of regions of search for spins to flip. 

The algorithm described above explores T R ~  on which each spin is inverted once. 
Consider now a broader class of TRS such that each spin can be inverted up to n times. 
The inversions should still take place one at a time because the Glauber dynamics is 
of a single spin nature. The number n must be odd since the ground state needs to be 
fully inverted. The harriers should be studied as functions of increasing n to extrapolate 
to infinitely large n. 

Our algorithm can be readily generalized to the n > 1 case. For simplicity we will 
consider n = 3. In addition to the original N-spin system A we create two replicas B 
and C and generate T R ~  in the combined system. Spins with labels N+i ,  2 N + i  are 

First reversals of spins will be counted in A, second in B, and third in C. Our algorithm 
in this case becomes subject to the following restrictions: turn a given spin from B 
(spin with number N + i) only if spin i is already inverted in A and turn spin in C 
provided its image in B was inverted. A spin in A can always be inverted. During the 
search for the optional TR described earlier we attempted to redirect a failed search 

counted as inverted only temporarily. In the generalized algorithm we can reinvert any 
flipped spin from C but spins in B can be reinverted if the corresponding spin in C 
did not turn. Similarly, spins in A can be reinverted if their images in B were not 
flipped. The search for TR is successful if the number of spins inverted in A equals N 
provided all those spins which are flipped in B are also flipped in C (their number is 

We have studied 100 L = 2 BSG systems and the n = 3 barriers were not found to 
be lower than when the trajectories were restricted to n = 1 for any of them. These 
results suggest that the n = 1 trajectories give the dominant if not the only contribution 
to (B). 

That the barrier scaling exponent at short length scales, studied here, is positive 
does not necessarily imply that there is an equilibrium sc-paramagnet phase transition 
at a non-zero temperature. For example, there is no non-zero T ordering when arbitrarily 
large domains can be overturned with finite cost in energy. However, the single spin-flip 
barriers to overturning each domain can still scale with a positive exponent. For 
instance, in the case of a percolating FM cluster, (B) diverges logarithmically [4,10] 
even though it has no long range order at any non-zero T. 

resoiuiion R, oui nunieiica; is ehaci even ;hough one does noi 

Id.r?tiCl! !a $pi% i, i = !, . . . , .hL El& af the 3.v sphs i s  z!!o..ed !a Rip an!y 0"C.P. 

by inverting bzch !hP !as! sxcessfd!y flipped spin and trying again: That spin was 

S N ) .  
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It is interesting to observe that our short length scale value of J, is compatible with 
experimental findings: recent studies [ll] of Rb,Cu,+,Co,F,, which is a model com- 
pound for the ZD Ising BSG, have revealed an extremely wide distribution of relaxation 
times. In the limit of T+O the median relaxation time T< was found to scale across 
16 frequency decades according to ln(rc/rO)= T-'-"" with u=2.3+0.4  and J,= 
0.9 f 0.2. 

In conclusion, we have studied the scaling behaviour of energy barriers in frustrated 
and unfrustrated ZD systems in the context of single spin flip dynamics. We have found 
that the barrier scaling exponents in these systems are the same and equal to the upper 
limit postulated by Fisher and Huse. 
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